

Advanced Reactor Track Opening

NRG Advanced Reactor Activities

NIC 2024 June 5-6, 2024 Amsterdam, Netherlands

MSc Tjark van Staveren

- Tjark van Staveren
- Programme manager materials irradiations at NRG
- 13 years of experience in R&D projects for nuclear materials to support LTO, operation and new reactors
- Contact: +31 6 18725113 / vanstaveren@nrg.eu

Contents

- Advanced reactor track objectives, organizational matters
- NRG activities in support of Advanced Reactor developments

NIC 2024 Programme

- Keynote plenary session 1
- Track 1 LTO (ageing management and LTO of NPPs)
 - Session 1.1: Regulatory approaches and research
 - Session 1.2: Industry challenges
- Track 2 New Build
 - Session 2.1: Government
 - Session 2.2: Industry and supply chain
- Track 3 Advanced Reactors
 - Session 3.1: Reactor developers
 - Session 3.2: Cooperation within the advanced reactor eco-system
- Keynote plenary session 2

www.nuclearinnovationconference.eu/program/program

Advanced reactors, what is happening?

- World-wide efforts by industry, (research) organisations and academia for development of advanced reactors
- Range of private and state-owned organisations around the world develop advanced reactor designs, often in partnership with existing nuclear supply chain
- NEA SMR dashboards report progress on SMRs and advanced reactors working on:
 - Licensing
 - Siting
 - Fuel
 - Engagement
 - Supply chain
 - Financing
- IAEA advanced reactor information system (ARIS) reports 78 advanced reactor and SMR reactor designs)
- But there are quite a few more...

The NEA Small Modular Reactor Dashboard

Time	Advanced reactors
13:00-16:30	Track 3 – Advanced Reactors, Session 3.1
13:00-13:30	Track opening: NRG activities in support of Advanced Reactor developments, Tjark van Staveren (NRG, The Netherlands)
13:30-14:00	Fuel cycle development for Molten Salt Reactors, Isabelle Morlaes (ORANO, France)
14:00-14:30	Development of the Thorizon MSR One reactor, Kiki Lauwers (THorizon, NL)
14:30-15:00	Coffee break
15:00-15:30	Hermes Reactor Design Overview, Micah Hacket (KAIROS Power, U.S.)
15:30-16:00	Designing for advanced reactors, Jean-Mary Hamy (Framatome, France)
16:00-16:30	Striving to streamline SMR deployment, Eleonora Lambridis (Tractebel, Belgium)
16:30-17:00	Panel session moderated by Tjark van Staveren (NRG, The Netherlands)

Time	Advanced reactors
9:00-13:30	Track 3 – Advanced Reactors, Session 3.2
09:00-09:10	Opening day 2
9:10-9:40	IAEA activities in support of advanced reactor developments, Aline des Cloizeaux (IAEA)
9:40-10:10	OECD/NEA and GIF activities to support the transition of Advanced Reactor Technologies from R&D to demonstration and deployment, Brent Wilhelm (OECD/NEA, France)
10:10-10:40	Regulatory framework in the Netherlands for licensing of advanced reactors. Joran de Jong (ANVS, Netherlands)
10:40-11:10	Coffee break
11:10-11:40	The SMR-LFR program, an enabler for innovation in nuclear, Pascal de Langhe (SCK CEN, Belgium)
11:40-12:10	EDF Energy perspective on development of advanced reactors in the UK, Jim Reed (EDF Energy, UK)
12:10-12:40	Progress in Developing Nuclear Graphite Grades for HTR and MSR application, Houzheng Wu (SINOSTEEL, China)
12:40-13:40	Lunch
13:40-14:10	Assessment of economical and societal impact of the development of molten salt reactors, Anna Menenti (Technopolis, the Netherlands)
14:10-14:40	Panel session moderated by Tjark van Staveren (NRG, The Netherlands)

NIC 2024 – Advanced reactor track organization

- Track leader will introduce speaker
- Speakers have 30 min timeslots
- Max 25 min for presentation + 5 min Q&A
- Track leader keeping time (signal after 20 minutes to conclude)
- Sticky notes to be provided to audience to collect questions
- One junior engineer will provide briefing about Advanced Reactor session topics, discussions and conclusions in plenary session

Ensuring Nuclear Performance

Advancing Nuclear Medicine

Advanced reactor development

Nuclear new build projects

Operational support

Long term operation

Decommissioning services

HFR is a multipurpose reactor for medical isotope production and nuclear energy research.

It is in operation since 1961, and operates in 9 'cycles' per year with intermediate maintenance and fuel loading.

High flux in combination with instrumentation allows (accelerated) testing of materials and fuels under controlled conditions

Advanced reactor activities at NRG

- Decades of experience in R&D activities for LWR and advanced reactor concepts (incl. High Temperature Reactors, Lead cooled reactors, Molten Salt Reactors, fusion etc.)
- Utilisation of unique nuclear infrastructure for neutron irradiations in combination with expertise on modelling and (safety) analyses
- R&D activities
 - Sponsored by the Dutch Ministry of Economic Affairs (incl. co-funding of international R&D projects
 - Bilateral activities for industry

Ministry of Economic Affairs of the Netherlands

Material and fuels R&D

- Advanced reactor concepts require ulletassessment of materials and fuels performance for challenging operating conditions
- Fuels and materials performance is established by test irradiations and \bullet characterisation during or after neutron irradiation
- \bullet
- Fuel performance, e.g.:Retention of fission productsChanges in physical properties
- Materials performance, e.g.: \bullet
 - Physical and mechanical properties
 - Interaction with cooling media •

Modelling reactor systems

System Thermal Hydraulics codes (e.g. Relap5, TRACE)

Development of SPECTRA code

Modelling reactor components

- Application of 3D CFD / FEM
 - Practical engineering increasingly complex geometries and physics to perform safety analyses)
 - High resolution to improve understanding and create reference data (numerical experiment) complementary to real experiments
- Development of tools towards:
 - Multi-phase
 - Multi-scale
 - Multi-physics

y z

Heat transfer in a fuel assembly *practical engineering resolution*

Heat transfer in a sub-channel *high resolution*

Taylor bubble in a pipe high resolution multi-phase

Flow and heat transfer ESCAPE electrical mock-up practical engineering resolution

Flow and heat transfer in Phénix multi-scale simulation (system & component level)

Conclusions

- NRG will continue to support advanced reactor developments in collaboration with international partners
- Existing nuclear infrastructure neutron irradiations will continue to be utilised to enable materials and fuels characterisation while new utilities are developed (PALLAS)
- Looking forward to interact with international experts to exchange thoughts at the Nuclear Innovation Conference 2024!

Thank you for your attention!

Any questions?

EU DuC = N