

Autoriteit Nucleaire Veiligheid en Stralingsbescherming

Licensing of Advanced Nuclear Reactors

Nuclear innovation conference

Joran de Jong

Joran de Jong Coordinating advisor - Licensing of new nuclear installations

Content

- 1. Introduction ANVS
- 2. Coalition ambitions
- 3. Regulatory framework
- 4. (Pre)Licensing Process
- 5. International collaboration
- 6. Program development

Authority for Nuclear Safety and Radiation Protection

Dutch regulatory body

- Main tasks include:
 - Policy & law advisement
 - > Authorisation (Licensing)
 - > Oversight & enforcement
 - Emergency preparedness
 - International collaboration
 - Public communication
 - Research and development

~ 170 people

New build

"[this cabinet puts in motion] ... the necessary steps for the construction of two new NPPs."

LTO Borssele

"[...] Therefore NPP Borssele will operate for a longer time, of course with respect to its safety."

Nuclear ambitions of the Dutch government

SMRs & AMRs "[..] means will be allocated in support of realization of SMRs [to gain knowledge on supply chain, control and oversight]"

Research reactor PALLAS under construction

License to construct granted March 2023

Small Modular Reactors

- > Large variation SMR's designs;
- > Smaller units, modular design
- > At first: SMR's with `conventional' light water technology;
- > Later: more `exotic' concepts (molten salt, lead cooled etc);

- > Important changes:
 - Passive heat removal
 - Smaller inventory
 - Alternative fuel/cooling
 - Safety systems

Regulatory challenges

- > Regulatory Framework
 - > Laws and regulations
 - > ANVS guidelines (DSR)
 - > Codes and Standards

- > Adequate assessment personnel
 - > Capacity
 - > Knowledge
 - > Experience

- > System uncertainties
 - > Innovative safety concepts
 - > Reliability of new systems
 - > Unknown unknowns

Regulatory framework: fit for any future developments

- Nuclear Energy Act (Kew) sets the frame; (most prominent law, other laws do also apply)
- (Ministerial) Decrees and ordinances; contain additional, more specific regulation,
- Further Conditions specified in License; may include international norms such as IAEAstandards/ WENRA reference levels
- ANVS Guidelines, e.g. VOBK/DSR; specify LWR requirements, comply or equivalent principle, annex with application for SMR's
- Various industrial codes and standards may be used by the applicant to support the safety case, part of the licensing base

Legally binding requirements

- > Formal legal framework is goal oriented, allows for specific implementation.
- > 2014/87/EURATOM (implemented in 'regeling nucleaire veiligheid')
 - Principle of defense in depth
 - Practical elimination of early and large releases
- > Nuclear facilities, ores and fissile materials decree:
 - Dose limits for anticipated operational occurrences->
 - Individual risk < 10⁻⁶ per year.
 - Group risk < 10⁻⁵ per year for 10 direct fatalities
 (Or n² times smaller for n times direct fatalities)

Frequence	Allowed effective dose		
	Adults	Children	
$F \ge 10^{-1}$	0,1 mSv	0,04 mSv	
$10^{-1} > F \ge 10^{-2}$	1 mSv	0,4 mSv	
$10^{-2} > F \ge 10^{-4}$	10 mSv	4 mSv	
$F < 10^{-4}$	100 mSv	40 mSv	

Technical Guidance

- > VOBK / DSR (Dutch Safety Requirements)
- > Written for large LWR's, grading applies
- > 'Comply or Equivalence' principle applies
- > Based on IAEA Safety Standards Series
- > Main topics include requirements for:
 - Safety objectives, technical requirements ---> -
 - Postulated events and (external) hazards
 - Application of the single failure criterion
 - Safety demonstration & documentation

Guidelines for the Safe Design and Operation of Nuclear Reactors

Technical requirements	. 17
Overall requirements	. 17
Requirements for the design of the reactor core and the shutdown	
systems	. 24
Requirements for the systems for fuel cooling in the reactor core	. 27
Requirements for the reactor coolant pressure boundary and the	
pressure and activity retaining components of systems outside the	
reactor coolant pressure boundary ("external systems")	. 29
Requirements for buildings	. 31
Requirements for the containment system	. 32
Requirements for instrumentation and control system (I&C)	. 35
Requirements for control rooms and emergency response facilities	. 41
Requirements for the electrical power supply	. 43
Requirements for the handling and storage of the fuel assemblies	. 46
Requirements for radiation protection	. 48

2023

3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12

Waste Management.

Key Notes

- Netherlands is blessed with a flexible, goal-oriented framework,
 capable of licensing any and all types of reactor technologies;
- Responsibility for the applicant to provide a robust safety case and execute licensing activities in a timely and predictable way;
- For licensing purposes, it is useful to have a translation to more conventional technologies i.t.o. defense in depth, barriers etc...

LTO Borssele

"[...] Therefore NPP Borssele will operate for a longer time, of course with respect to its safety."

What's required

- > Legal:
 - Amending Nuclear Energy Act (end date 31 December 2033) including environmental impact assessment
 - Application for change to license documentation
- > Technical:
 - Substantial studies required to validate proven readiness for LTO beyond 2033 (>60 years). Involvement of IRSN as TSO of ANVS is expected.
- > Business case
 - Operator needs a valid business case, including fuel contracts and strategy, waste disposal, etc.

Current status

- Preliminary discussions ANVS / licensee with respect to planning, SALTO mission, extra periodic safety review, license application.
- Feasibility studies performed by licensee on aging and conceptual aging
- Environmental impact assessment procedure to change the nuclear energy act was started.
- Discussions around asking an extra periodic safety review and possibilities of stakeholder involvement by ANVS earlier then in the formal licensing procedure in the end.

New build

"[this cabinet puts in motion] ... the necessary steps for the construction of two new NPPs."

Status new builds NL

- Borssele site designated as preferred location.
- Environmental impact assessments will start later this year, will also assess 'Maasvlakte' (Port of Rotterdam)
- 2024 a feasibility study will be performed by three suppliers (KNHS, EDF, Westinghouse)
- 2025 expected start of Tendering process for nuclear supplier

Current status ANVS

- > Focus on preparations workforce
- Inform Dutch ministries and vendors regarding specific Dutch regulation and procedures during feasibility study and tendering process
- Advised Ministry of Economic Affairs and Climate to take nuclear requirements into account for their site evaluation and informed Ministry on Conceptual Safety Document
- Will assess and advise on the starting notification of strategic EIA expected end 2023
- > Experience in Pallas Research Reactor extremely valuable